Bio-based Materials for Offshore Wind Turbine Blades

Prepared for Wind Energy IGERT Seminar December 4th, 2014

Rachel Koh, Ph.D. Student University of Massachusetts Amherst Committee: Associate Professor Peggi Clouston, Assistant Professor Matt Lackner, Professor Bob Hyers, Adjunct Faculty John Fabel

Basic Considerations for Blade Materials

- Stiffness
 - tower clearance
- Strength
 - tension, compression, bending
 - fatigue
- Density
 - influences strength requirement

Ashby Materials Selection Charts

Issues with fiberglass and carbon fiber

- Carbon fiber
 - expensive
 - not widely used in industry today
- Fiberglass
 - recyclability/ end-of-life disposal options
 - energy intensive production
 - mass scaling (100m baseline blade > 100 metric tons)
 - global production increase from 5.9 million metric tons in 1999 to 8.7 million in 2011

Political action in Sustainable Materials

- Concern with extraction/processing/ manufacturing emissions and end-of-product-life options has generated:
 - EU- *Directive on Landfill of Waste* and *End-of-life Vehicle Directive* are seen as barriers for development and continued use of glass and carbon in some markets
 - USA- Dept. of Energy initiative produced A Vision to Enhance U.S. Economic Security Through Renewable Plant/Crop-Based Resource Use and The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020 which discuss the research and development needs for production, processing, and manufacturing of renewable materials

Advantages of Bio-Based Materials

- Competitive specific stiffness and strength
- Competitive fatigue properties
- Renewable
- Biodegradable when triggered
- Low cost raw materials
- Low emissions manufacturing

Challenges with Bio-Based Materials

- Variable mechanical properties
- Limited experimental data for atypical loading conditions such as off-axis and multiaxial loading
- High sensitivity to moisture
- Not fully developed modelling techniques
- Not fully developed manufacturing processes
- Perception...

Fiberglass vs. Hemp

Fiberglass vs. Hemp

Magic Trick!

Research Objectives

- Generate experimental data for atypical, multiaxial loading situations
- Develop numerical model which aligns with experimental data from ourselves and prior studies
- Incorporate material variability into the design of wind turbine blades
- Propose a design for a bio-based wind turbine blade

BOM for Sandia 100m Fiberglass Blade

Material	Description	Usage	Mass (kg)	Percent
				Blade
				Mass
E-LT-5500	uniaxial fiberglass	spar caps, trailing	$25,\!522$	22.0%
		edge reinforcement		
SNL Triax	triaxial fiberglass	root build-up, internal	$20,\!050$	17.3%
		and external surfaces		
Saertex	double-bias fiberglass	shear webs	$2,\!119$	1.8%
EP-3	resin	all fiberglass parts	51,718	44.7%
Foam	foam	core panels, shear	$15,\!333$	13.3%
		webs		
Gelcoat	coating	coating	920	0.8%

Table compiled with data from:

Griffith, D. T. & Ashwill, T. D. (2011). The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00. Sandia National Laboratories Technical Report

Multidirectional Materials in Wind Turbine Blades

Shear Strength of an Angle-Ply Wood Laminate

Torsion Test

Figure from:

Yang (2012) Torsional Shear Strength and Size Effect in Structural Composite Lumber. Master's Thesis. Univ. of Mass. Amherst.

Koh 2014

Angle-Ply Laminate Fabrication

Torsion test set-up

Preliminary Results

Future work

- Experiment limitations
 - Adhesive spreading
 - Clamping mechanism
 - Test apparatus limitations
 - Edge effects

- Model
 - Interaction between plies
 - Non-catastrophic failure

Probabilistic Design

Acknowledgements

- Committee: Professor Bob Hyers (MIE), Assistant Professor Matt Lackner (MIE), Associate Professor Peggi Clouston (ECO), Adjunct Faculty John Fabel (ECO)
- Undergraduate Students: Alex Finn (MIE `14), Jesse Turek (BCT `14), Charlie Tormanen (BCT `15)
- Mom
- Funding source: NSF IGERT Grant Number 1068864